\(\int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx\) [535]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 221 \[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=-\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}}-\frac {32 a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 \left (4 a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{3 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) (4 a+b \sin (c+d x))}{3 b^3 d \sqrt {a+b \sin (c+d x)}} \]

[Out]

-2/3*cos(d*x+c)^3/b/d/(a+b*sin(d*x+c))^(3/2)-4/3*cos(d*x+c)*(4*a+b*sin(d*x+c))/b^3/d/(a+b*sin(d*x+c))^(1/2)+32
/3*a*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)
*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/b^4/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-8/3*(4*a^2-b^2)*(sin(1/2*c+1/4*P
i+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a
+b*sin(d*x+c))/(a+b))^(1/2)/b^4/d/(a+b*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2772, 2942, 2831, 2742, 2740, 2734, 2732} \[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\frac {8 \left (4 a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{3 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {32 a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{3 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {4 \cos (c+d x) (4 a+b \sin (c+d x))}{3 b^3 d \sqrt {a+b \sin (c+d x)}}-\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}} \]

[In]

Int[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(-2*Cos[c + d*x]^3)/(3*b*d*(a + b*Sin[c + d*x])^(3/2)) - (32*a*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sq
rt[a + b*Sin[c + d*x]])/(3*b^4*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) + (8*(4*a^2 - b^2)*EllipticF[(c - Pi/2 +
d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(3*b^4*d*Sqrt[a + b*Sin[c + d*x]]) - (4*Cos[c + d*x
]*(4*a + b*Sin[c + d*x]))/(3*b^3*d*Sqrt[a + b*Sin[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2772

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[g^2*((p - 1)/(b*(m + 1))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2942

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x])/(b^2*f*(m + 1)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + 1)*(m + p + 1
))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}}-\frac {2 \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx}{b} \\ & = -\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x) (4 a+b \sin (c+d x))}{3 b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {8 \int \frac {-\frac {b}{2}-2 a \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 b^3} \\ & = -\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x) (4 a+b \sin (c+d x))}{3 b^3 d \sqrt {a+b \sin (c+d x)}}-\frac {(16 a) \int \sqrt {a+b \sin (c+d x)} \, dx}{3 b^4}+\frac {\left (4 \left (4 a^2-b^2\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 b^4} \\ & = -\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x) (4 a+b \sin (c+d x))}{3 b^3 d \sqrt {a+b \sin (c+d x)}}-\frac {\left (16 a \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{3 b^4 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (4 \left (4 a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{3 b^4 \sqrt {a+b \sin (c+d x)}} \\ & = -\frac {2 \cos ^3(c+d x)}{3 b d (a+b \sin (c+d x))^{3/2}}-\frac {32 a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 \left (4 a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{3 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) (4 a+b \sin (c+d x))}{3 b^3 d \sqrt {a+b \sin (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.79 \[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\frac {32 a (a+b)^2 E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \left (\frac {a+b \sin (c+d x)}{a+b}\right )^{3/2}-8 (a+b) \left (4 a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \left (\frac {a+b \sin (c+d x)}{a+b}\right )^{3/2}+b \cos (c+d x) \left (-16 a^2-3 b^2+b^2 \cos (2 (c+d x))-20 a b \sin (c+d x)\right )}{3 b^4 d (a+b \sin (c+d x))^{3/2}} \]

[In]

Integrate[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(32*a*(a + b)^2*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*((a + b*Sin[c + d*x])/(a + b))^(3/2) - 8*(a +
b)*(4*a^2 - b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*((a + b*Sin[c + d*x])/(a + b))^(3/2) + b*Cos[
c + d*x]*(-16*a^2 - 3*b^2 + b^2*Cos[2*(c + d*x)] - 20*a*b*Sin[c + d*x]))/(3*b^4*d*(a + b*Sin[c + d*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1045\) vs. \(2(267)=534\).

Time = 1.95 (sec) , antiderivative size = 1046, normalized size of antiderivative = 4.73

method result size
default \(\text {Expression too large to display}\) \(1046\)

[In]

int(cos(d*x+c)^4/(a+b*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*(-b^4*cos(d*x+c)^4+10*a*b^3*cos(d*x+c)^2*sin(d*x+c)+(8*a^2*b^2+2*b^4)*cos(d*x+c)^2-4*(-b/(a+b)*sin(d*x+c)
+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*b*(4*EllipticE((b/(a-b)
*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3-4*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b
))^(1/2))*a*b^2-4*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b+3*EllipticF((b/(a-b)
*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^2+EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b
))^(1/2))*b^3)*sin(d*x+c)+16*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*
sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b-12*(b/(a-b)*
sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b
/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^2-4*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*s
in(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-
b)/(a+b))^(1/2))*a*b^3-16*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin
(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4+16*(b/(a-b)*sin(d
*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b
)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^2)/(a+b*sin(d*x+c))^(3/2)/b^5/cos(d*x+c)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.16 (sec) , antiderivative size = 705, normalized size of antiderivative = 3.19 \[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\frac {2 \, {\left (2 \, {\left (\sqrt {2} {\left (8 \, a^{2} b^{2} - 3 \, b^{4}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (8 \, a^{3} b - 3 \, a b^{3}\right )} \sin \left (d x + c\right ) - \sqrt {2} {\left (8 \, a^{4} + 5 \, a^{2} b^{2} - 3 \, b^{4}\right )}\right )} \sqrt {i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + 2 \, {\left (\sqrt {2} {\left (8 \, a^{2} b^{2} - 3 \, b^{4}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (8 \, a^{3} b - 3 \, a b^{3}\right )} \sin \left (d x + c\right ) - \sqrt {2} {\left (8 \, a^{4} + 5 \, a^{2} b^{2} - 3 \, b^{4}\right )}\right )} \sqrt {-i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) + 24 \, {\left (i \, \sqrt {2} a b^{3} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} a^{2} b^{2} \sin \left (d x + c\right ) + \sqrt {2} {\left (-i \, a^{3} b - i \, a b^{3}\right )}\right )} \sqrt {i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) + 24 \, {\left (-i \, \sqrt {2} a b^{3} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} a^{2} b^{2} \sin \left (d x + c\right ) + \sqrt {2} {\left (i \, a^{3} b + i \, a b^{3}\right )}\right )} \sqrt {-i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) - 3 \, {\left (b^{4} \cos \left (d x + c\right )^{3} - 10 \, a b^{3} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, {\left (4 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}\right )}}{9 \, {\left (b^{7} d \cos \left (d x + c\right )^{2} - 2 \, a b^{6} d \sin \left (d x + c\right ) - {\left (a^{2} b^{5} + b^{7}\right )} d\right )}} \]

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

2/9*(2*(sqrt(2)*(8*a^2*b^2 - 3*b^4)*cos(d*x + c)^2 - 2*sqrt(2)*(8*a^3*b - 3*a*b^3)*sin(d*x + c) - sqrt(2)*(8*a
^4 + 5*a^2*b^2 - 3*b^4))*sqrt(I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b
^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b) + 2*(sqrt(2)*(8*a^2*b^2 - 3*b^4)*cos(d*x + c)^2 - 2
*sqrt(2)*(8*a^3*b - 3*a*b^3)*sin(d*x + c) - sqrt(2)*(8*a^4 + 5*a^2*b^2 - 3*b^4))*sqrt(-I*b)*weierstrassPInvers
e(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I
*a)/b) + 24*(I*sqrt(2)*a*b^3*cos(d*x + c)^2 - 2*I*sqrt(2)*a^2*b^2*sin(d*x + c) + sqrt(2)*(-I*a^3*b - I*a*b^3))
*sqrt(I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3
*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b))
 + 24*(-I*sqrt(2)*a*b^3*cos(d*x + c)^2 + 2*I*sqrt(2)*a^2*b^2*sin(d*x + c) + sqrt(2)*(I*a^3*b + I*a*b^3))*sqrt(
-I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*
a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b)) -
3*(b^4*cos(d*x + c)^3 - 10*a*b^3*cos(d*x + c)*sin(d*x + c) - 2*(4*a^2*b^2 + b^4)*cos(d*x + c))*sqrt(b*sin(d*x
+ c) + a))/(b^7*d*cos(d*x + c)^2 - 2*a*b^6*d*sin(d*x + c) - (a^2*b^5 + b^7)*d)

Sympy [F]

\[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**4/(a+b*sin(d*x+c))**(5/2),x)

[Out]

Integral(cos(c + d*x)**4/(a + b*sin(c + d*x))**(5/2), x)

Maxima [F]

\[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4/(b*sin(d*x + c) + a)^(5/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(cos(c + d*x)^4/(a + b*sin(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^4/(a + b*sin(c + d*x))^(5/2), x)